
Computer Science I
Mid-Term - Sep 19th, 2011

Max Marks: 50 Time: 3 Hrs

1. Show that the big-O notation is transitive – i.e. for any three functions on integers f, g and h,

f = O(g) and g = O(h) implies f = O(h). Marks: 1

2. Sort the following 10 functions in the increasing sequence of their Order. In other words sort

them as a sequence f1, f2, f3, …, f10 such that fi=O(fi+1) for all i=1,…,9. Marks: 2

10-3n3, n(log n)2, 1012, 106(log n)100, nloglog n , log log n, 1/log n, 2log log n, nlog log n , n!

3. Consider the grammar S : aS | aSbS | , representing a set of strings made up of terminal

symbols a and b. Show that this set is {x | any prefix of x has at least as many a’s as b’s}. A

prefix of a string is a substring starting from the beginning of the string. Marks: 3

4. Consider the grammar shown below with terminal symbols a, b and c. Marks: 5

S : aScB | A | b

A : cA | c

B : d | A

Which of the following are valid strings under this grammar, and why?

a. abcd
b. aabadbc
c. aabccccd
d. ababcdcd
e. accccd

5. Insertion Sort on small arrays within Merge Sort

Although Merge Sort runs in O(n log n) worst case time and insertion sort runs in O(n2)

worst case time (remember the shifts to be done for every insertion), the constant factors in

insertion sort make it faster for small n. Thus it makes sense to use insertion sort within

Merge Sort when the sub-problems become sufficiently small. Consider a modification of

Merge Sort in which n/k subsets of length k are sorted individually using insertion sort and

then merged using the standard merging mechanism. k is a value to be determined.

a. Show that the n/k sub-lists, each of length k, can all be sorted by insertion sort in

worst case O(nk) time. Marks: 2

b. Show that the sorted sub-lists can be merged together in O(n log(n/k)) time in the

worst case. Marks: 5

c. Explain the way the overall running time of the algorithm changes as k varies from

small constant values to n. Marks: 1

d. What is the optimum value of k one should choose while ensuring an asymptotic

worst case time of O(n log n). Marks: 1

6. Let X and Y be two arrays each containing n numbers already in sorted order. Give an

algorithm that runs in worst case O(log n) time to find the median of all the 2n elements in

X and Y together. Hint: Use recursion and binary search. Marks: 5

7. Write two versions of swap in C++ – both swap a pair of integers located elsewhere – but

with slightly different arguments.

void swap1(int *i, int *j) and void swap2(int &i, int &j)

 Also show how these swap functions would be called from say the main program shown

below. Complete the argument list for the two calls to swap to show how the two functions

would be invoked.

 int main()
{
 int p = 1, q = 2;
 swap1(…); // to swap p and q

 int x = 10, y = 20;
 swap2(…); // to swap x and y
}

 Marks: 5

8. Write declarations for the following: Marks: 5

a. a pointer to a character;

b. an array of 10 objects of type T

c. a constant double

d. a constant pointer to an array of characters

e. a reference to an object of type T

f. a constant integer serving as a common flag across all instances of a class

g. a reference to an array of objects of type T

h. a method called doSomething of a class C taking arguments of type pointer to

character and reference to integer and returning no value.

i. a method safeDo of a class C that takes no arguments returns an integer and

guarantees that it has no effect on the state of the object on which it is called.

j. a function getHandle that takes a reference to an array of objects of type T and

another object x of type T as arguments and returns a reference to the element of

the input array that is say closest to x, while guaranteeing that the input array is not

tampered with during the execution of getHandle.

Also give appropriate initializations for a-g. Only the declarations please for h-j.

9. Rewrite the following for statement Marks: 3+2

for (int i = 0; i<max_length; i++)

{

if (inputs_line[i]==’?’) quest_count++;

 }

a. as an equivalent while statement.

b. to use a pointer as the loop variable—that is, so that the test is of the form *p=='?’.

10. All of the following are illegal names for variables in a C++ program. Explain what is wrong

with each. Marks: 2 ½
a. 2nd_coord
b. y-val
c. double
d. x:y_ratio
e. purple&orange

11. What will the following program output? Marks: 5

#include <iostream>
using namespace std;

long toDo(long n, long* flist)
{
 if (n==0) return -1;

 if (n < 0) n = -n;

 if (n = = 1) return 0;

 int i = 0, d = 2;

 while (n>1)
 {

flist[i] = 0;
 while (n%d == 0 && n > 1)
 {
 if (flist[i] == 0)
 {
 flist[i] = d; i++;
 }
 n /= d;
 }
 d++;
 }
 return i;
}

int main()
{

long flist[100];

for (long n=1; n<=100; n++)
{

int k = toDo(n, flist);
cout << n << “: “;
for (int i=0; i<k; i++)
{
 cout << flist[i] << " ";

 }
cout << endl;

}
}

12. Find at least 4 compilation errors and 1 error that will surface only at runtime (assuming you
have removed all the compilation errors) in the following piece of code. There are in fact
many more errors in this piece of code – bonus for finding more than 1 runtime and 4

compilation errors. Marks: 2 ½

#include <iostream>
using namespace std;

class C
{
 public:
 C(void) : x(0), y(NULL) {} //(1)
 ~C(void) { delete y; } //(2)
 void doThis(void) const { doSomething(); } //(3)
 int doThat(C* c) { x = c.getX(); } //(4)
 int& getX(void) { return x; } //(5)

 private:
 int x, *y; //(6)
 void doSomething(void) { x = (x > *y)? x : y; } //(7)
}

int foo(void)
{
 C *c = new C; //(8)
 *c->getX(); //(9)
 delete c; //(10)
}

int main()
{
 C a, b; //(11)
 a.doThis; //(12)
 b.doThat(a); //(13)
 b.doSomething(); //(14)
 foo(); //(15)
 cout << a << “ “ << b.x; //(16)
}

The line numbers are shown as comments on the right. Use these to refer to the lines where
you think there is an error and explain what the error is.

